

A ∆-Based Linearly Extensible Multiprocessor
Network

Manaullah

Department of Electrical Engineering, Faculty of Engineering & Technology,

Jamia Millia Islamia, New Delhi, India

Abstract— To speeding up more and more computation
power by reducing the size of the system, it is always a
trend. In this direction, a novel Triangle based
multiprocessor system has been proposed in this paper,
which is compact in size (occupy lessor space) and exhibits
all the features and characteristics of a commercial
available multiprocessor. The proposed network has lessor
number of processing elements, smaller diameter and less
complex. Its extension requires only one processing
element per extension i.e. linearly extensible. Simulation
studies show the better performance to other similar
systems.
Keywords: Multiprocessor Architecture, Linearly
Extensible Network, Load Imbalance Factor, Scheduling,
and Diameter

I. INTRODUCTION
In recent years, considerable progress has been made

in the design of integrated circuit technology, which has
resulted in the emergence of highly powerful processors.
Beside that several new parallel architectures have been
proposed to increase computing speed to complement
the advances in technology [1]. But to this day the
problem of interconnecting the processing elements to
achieve high computational bandwidth has not been
fully solved. Increase parallelism means more
communication overheads; internodes distance, message
traffic density and fault tolerance are dependent on the
diameter of the network and the degree of a node in it
[2-7].

An interconnection network with large diameter has
very low message passing bandwidth and a network
with high degree of node has higher hardware
complexity. In addition, computing system should be
easily expandable; there should be no changes in the
basic node configuration as we increase the number of
nodes in a system.

The choice of topology of the interconnection
network is critical in design of massive parallel
computer system. For this reason, a plethora of
interconnection network proposals have appeared in the
literature and an enormous amount of research has
centered on the design and analysis of the networks [8].
In additional to designing an appropriate network, the
efficient management of parallelism on an
interconnection network involves optimizing conflicting
performance indices, like minimization of

communication and scheduling overheads and uniform load
distribution among the processors. Such issues are addressed at the
organizational level by appropriate scheduling mechanisms.

Recently an organizational model has been reported as Linearly
Extensible Tree (LET) network with a dynamic scheduling scheme
Minimum Distance Scheduling (MDS) [9]. This architecture
consists of 6 processors instead of 8 processors as in hypercube or
deBruijn architecture. Using the dynamic scheduling scheme,
named Minimum Distance Scheduling (MDS); it has been shown
that the LET is performing at par with other architectures [10].
Another Linear Extensible Cube (LEC) network has also been
reported [11]. This LEC combines the features of LET and
hypercube networks. It is shown that the LEC is performing on
equal footing or rather better than the remaining similar networks.

In this paper, a new linearly extensible triangle–based
architecture has been proposed and its properties have been
compared with other similar architectures. Two dynamic
scheduling schemes, MDS and Hierarchical Balancing Method
(HBM) scheduling, [9,10] are implemented on this architecture
and the performance parameters are obtained. These results are
compared with other linearly extensible networks with the same
scheduling schemes in the following chapters.

2.0 BASIC TOPOLOGICAL PROPERTIES

2.1 Linearly Extensible Tree (LET) Multiprocessor Network
As the proposed network is based on the concept of LET

network [8], and LEC network [11] a brief description of LET and
LEC networks are given for ready reference to researchers. The
LET network combines the properties of linear extensibility
withsmall number of processing elements per extension. The
network has a small diameter that reduces the average path length
traveled by all messages and contains a constant degree per node.

The LET network grows linearly in a binary tree like shape. In a
binary tree, the number of nodes at level j is 2^j whereas in LET
network the number is (j+1).

Let Q be a set of N identical processors, represented as
 Q = {P0 , P1 ,P N-1 }
The number of processors N in the network is given by

1d

1k

KN (2.1)

where d is the depth of the network. For different depths, networks
having 1,3,6,10,15,21,..... processors are possible.

In order to define the link functions, we denote each processor
in the set Q as P ij., j being the level in LET where the processor Pi
resides. As per the LET policy, only (j+1) processors exist at level

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 700

j. Thus at level 0, P0 exists and it may be redesignated as
P00 and so on. The arrangement is shown in the Fig. 2.1

P00
P11 P21
P32 P42 P52
P63 P73 P83 P93
..
...

Fig. 2.1 Arrangement of processors in LET

Let Q be the set of redesignated processors of Q. Thus,
 Q = { Pij } 0 i N-1, 0 j d

The interconnection between processors are governed by
two functions L and R and is represented as

L (Pij) = P (i+j+1) mod N

R (Pij) = P (i+j+2) mod N for all Pij in Q (2.2)

These two functions L & R indicate the links between
various processors in the network. Fig. 2.2 shows a LET
network for six processors along with its adjacency
matrix.

2.2 Linearly Extensible Cube (LEC) Multiprocessor Network
2.2.1 Design and analysis

LEC network grows linearly in a cube like shape. In LET
network, the number of nodes at level j is (j+1), whereas in LEC
network no addition of nodes is required, at any level, the number
of processing elements is fixed i.e 2 at every level. The network
itself may be defined through connection functions in a manner
similar to that of cube connection

Let Q be a set of N identical processors, represented as
 Q = { P0,P1,P2.....................PN-1 }
The number of processors N in the network is given by 2n for

n=1,2,3.......,d where d is the depth of the network. For different
depths, network having 2,4,6,8,10......... processors are possible.

In order to define the link functions we denote each processor in
the set Q as Pij, j being the level in LEC where the processor Pi
resides. As per the LEC policy, only two processors exist at level
j. Thus at level 0, P0 and P1 exist and it may be redesignated as P00
and P10, and so on. The arrangement is shown in Fig. 2.3

P00 P10
P21 P31
P42 P52
.......................................

Fig. 2.3 Arrangement of processors in LEC

Let Q be the set of designated processors of Q Thus
 Q = {Pi} , 0 i N-1

The link function L and R define the mapping from Q to Q as
 L(Pi)=P (i+1) mod N
 R(Pi)=P(i+2) mod N For all Pi in Q

The two functions L and R indicate the links between various
processors in the network Fig.2.4 shows an LEC network for 6
processors along with its adjacency matrix

2.3 Design of the Proposed Multiprocessor Network

The proposed triangle-based multiprocessor network is
basically having the concept of simple geometry and its
interconnections topology exhibits, the properties of a linearly
extensible multiprocessor architecture. The details of the design of
a triangle-based network topology is given below.

Draw an isosceles triangle i.e. a triangle whose two sides are

equal. Bisect the base angles of this triangle P0 P1 P2. The new
isosceles triangle is P0 P1 P3. Connect the vertex of these two
triangles right angle upward. It is the proposed triangle based
multiprocessor architecture. Extend the vertices upward at any
point on this extended vertex when joined to the base angles P0 P1,
will show the expandability of the proposed architecture as shown
in Fig. 2.6

(a) Linearly Extensible Tree

(b) Adjacency Matrix

P0

P1 P2

P3 P5 P4

Fig. 2.2 Network with 6 Processors

0 1 1 1 0 0
1 0 0 1 1 0
1 0 0 0 1 1
1 1 0 0 0 1
0 1 1 0 0 0
0 0 1 1 0 0

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 701

2.3.1 Properties of the proposed network: Some
properties of the proposed network have been compared
with LET, LEC, de-Bruijn and hypercube networks.

a) Number of Nodes:

The number of nodes in a multiprocessor network
plays a vital role by virtue of which the complexity of
the system is affected. Lesser the number of nodes,
lesser is the systems complexity and hence is more
economical. The number of nodes in the LEC network is
N= 2n (for n>0), whereas the number of nodes in the
LET network N=k, where as the nodes in hypercube
and deBruijn networks are 2n.. In the proposed network,
it is k+1, (for k> 3) i.e. 4. Thus the proposed network is
more economical than other networks of having lesser
number of processing elements in it.
b) Degree of Node

Degree or connectivity of a node in a multiprocessor
system is the number of connections required at each
node. Connectivity of the node determines the hardware
complexity of the network. The higher the connectivity,
the higher is the hardware complexity and hence the cost
of the network. The degree of node in the LEC is always
4 or less, same as in LET network. Though in case of
deBruijn it is constt. at 4 where as in hypercube, the
degree increases with the size of the system. In the
proposed network it is (N-1).

c) Extensibility
Extensibility is the property which facilitates large sized system

out of small ones with minimum changes in the configuration of
the nodes. In the proposed network the extension complexity
increases in a constant manner. Each extension requires single
layer of two nodes in LEC whereas in the case of LET network the
extension complexity increases linearly because each extension
requires adding a single layer of (N+1) nodes, where as in
hypercube and deBruijn netrworks, the extensibility is exponential.
In the proposed network, each extension requires only one node
without changing the basic configuration.
d) Diameter

The diameter of a multiprocessor network is a measure of the
maximum internode distance in the network. This property is
important in determining the distance involved in communications
and hence the performance of the multiprocessor system. The
diameter of the network is bound to increase as the size grows
unless there is no limit on the number of the links. Ignoring the
foldback connections, the diameter of LET network is ON,
whereas in LEC network the diameter is O ([N]), where as in
hypercube & deBruijn it is logarithmic. In the proposed network
the diameter is only 2 and is constant for all stages of the system
with drastically reduced number of processors at different depths
in comparison to LET & LEC networks.
A comparative study of number of processors for various depth of
a network is shown in table 2.1.
Table 2.2 shows the diameter of different depth. These results
have been obtained using shortest path algorithm. It may be seen
that the diameter does not always in crease with the addition of a
layer of processors.
Table 2.3 shows the summary of these parameters, which is
depicted, in a comparative form.

Fig. 2.4 Linearly Extensible Cube
with 6 processors

P0 P1

P2 P3

P4 P5

(a) LEC Network

(b) Adjacency Matrix

0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

P0 P1

P2

P3

Fig. 2.5 Network with 4 Processors

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

(a) Linearly Extensible Triangle

(b) Adjacency Matrix

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 702

Table 2.1
NUMBER OF PROCESSORS FOR VARIOUS DEPTH

Depth 0 1 2 3 4 5 6
LEC 2 4 6 8 10 12 14
LET 1 3 6 10 15 21 28

Proposed Network 3 4 5 6 7 8 9

Table 2.2

COMPARATIVE DIAMETER OF VARIOUS SIZED NETWORKS
Depth 0 1 2 3 4 5 6

Diameter
in LEC 0 1 1 2 2 3 3
in LET 0 1 2 3 4 4 5

in Proposed Network(LE) 1 2 2 2 2 2 2

Table 2.3
SUMMARY OF PARAMETERS

Parameters Hypercube De-Bruijn LET LEC Proposed Network (LE)

No. of processor N = 2n N = 2n

1d

1k

KN N = 2*n

n

3K

1kN

Degree N 4 4 4 N-1
Extensibility 2n 2n N+1 2 N+1

Diameter O(log2N) O(log2N))NO(O(N) 2

3.0 THE HBM AND MDS SCHEDULING ALGORITHMS
When the problem graph topology is not known a priori,

the mapping is done on the fly onto the processors. This
dynamic load balancing is essential for efficient utilization of
highly parallel systems when solving non-uniform problems
with unpredictable load estimates. Our studies show that the
network has good load balancing properties when considering
problem structures having parallelism but non-uniform
growth in various branches.

The general model of the dynamic load balancing is
mainly based on the load balancing profitability
determination at various sites in a multiprocessor network
[10]. Whenever profitable, a balancer is invoked which
migrates tasks to achieve a more uniform distribution of load
on processors. Each donor processor, during balancing,
selects most suitable tasks (based on task dependencies) for
migration thus maintaining minimum distance. The balancer
uses the concept of balancing domains, which reduces the
overhead of the balancing process, but does not ensure a
balanced load for the entire system. This trade-off is
illustrated in the scheduling strategies.
3.1 The HBM Algorithm

The HBM strategy organizes the multi-computer system
into a hierarchy of balancing domains, thereby decentralizing
the balancing process. Specific processor are designated to
control the balancing operations at different levels of the
hierarchy. In this case, processors incharge of the balancing
process at a level Ii, receive load information from both level,
Ii-1, domains. Global balancing is achieved by ascending the
net and balancing the load between adjacent domains at
network level in the hierarchy. This procedure is

asynchronous, however, where balancing is invoked within a
domain whenever an imbalance is detected by the domain’s
designated controller. For a binary hierarchical configuration,
the size of the balancing domains double from one level to
the next.

The hierarchical balancing scheme functions
asynchronously. The balancing process is triggered at
different levels in the hierarchy by the receipt of load update
messages indicating an imbalance between lower level
domains. All load levels are initialized with each processor
sending its load information up the network. To implement
HBM in the proposed network, this scheme has been
modified. The implementation of this algorithm in C-like
notation is given below:

Hier ()
{
/* Generate the first task at the PMAX –2 and PMAX –1 processors
*/
ZDS [PMAX-1] = 1 ; ZDS [PMAX-2] = 1
While (it _ count < L)
{
/* calculate IL & RIL */
IL = CIL (ZDS);
RIL = Ceil (IL);
Printf (ZDS);
For (j = 0; j <N; ++j)
{
flag = 0;
/* find the table no of jth processor */
for (m = 0; m <N/2; ++m)
for (n=0; n <f2; ++n)
if (1[m] [n] = = j) label_No = m;

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 703

/* find where to migrate */
if (label_No = = (N/2 1) to_migrate = 0; else to_migrate =
label_No +1;
while (true)
{
while (true)
{
for (m=0;m <2++m)
if (ZDS [1 [to_migrate] [m]] < RIL) flag = 1;
if (flag = = 1) break;
else
{
to_migrate ++;
if (to_migrate > = N/2) to_migrate = 0;
}
}
if (flag = = 1) migrate (j, to – migrate);
if (ZDS[1] < = RIL)break;
}}}
/* calculate LIF */

LIF = (maximum (ZDS) IL)/ IL;
Printf (ZDS);
/* double the task */
ZDS = 2 * ZDS;
It_count ++;
}}
/* FUNCTIONS USED BY algorithm */
/*CIL & maximum are identical to the previous algorithms */
Migrate (P_No, to_migrate)
{
/* get minimum loaded processes at the level where migration is
being done */
small = ZDS [1 [to_migrate] [0]];
if (ZDS [1 {to_migrate] [1]])< ZDS [1 [to_migrate] [0]; small = 1
[to-migrate [1];
/* transfer the load */
ZDS [P_No] --;
ZDS [small] + = 1;
}

3.2 The MDS Algorithm

The scheme has been developed for a tree type problem
structure. The approach tries to maximize the load balancing
among processors under the constraint of the need to keep
message path lengths to one hop (minimum distance
property). Mostly any load-balancing algorithm will consider
the overall load at a processor. However, in this algorithm we
take into account the ‘active load’ only for this purpose. In a
tree type problem structure, it is expected that load at a
particular level only has to compete for processor time and
hence the load at other levels should not be considered for
balancing. This load at a level in the problem tree, we define
as active load [10].

In the light of the above, the algorithm calculates ideal load
value for each level, which is used by load balancer to detect
load imbalances and make load migration decisions. The load
imbalance factor for kth level of task tree, denoted as LIFk , is
defined as :

LIFk = [max { loadk (Pi) } - (ideal-load)k] / (ideal-load)k

where (ideal-load)k = [loadk(P0) + loadk (P1)+...+loadk(PN-1)] /
N,
and max (loadk (Pi)) denotes the maximum load pertaining
to level k of the task tree on a processor Pi due to kth level of
the task tree. The whole algorithm in the modified form in a
“C” like notation, is given below:

mds()
{
 map root_task on P0;
 store (root_task);
/*store(task) will store the subtasks in a list, let n be the length of
this list */

k = 1;
do
{
 for (count = 0; count n; count ++)
 {
 Tc = select (list) ;
 store(TC) ;
 Tf = father(Tc);

 /* father(task) returns the father of the task */
 Pf = processor(Tf);
 map Tc on Pf

/* this is zero distance scheduling */
 }
 update (k);
/* update (k) modifies the kth row of LT */
 schedule (k);
 k = k+1;
 } while (k < kmax);
 }
 schedule (int k)
 {
 IL = ideal_load(k);
 for (itno = 0; itno < 2; into ++)
 { /* number of iterations */
 for (i = 0; i < N; i ++) {
 if (load(Pi) > IL)
 add_dQ(Pi);
/*add_dQ(Pi) puts the processor Pi in donor priority queue dQ */
/* load Pi gives the load on Pi from LT[k,i] */
 else add_aQ(Pi);
 /* add_aQ(Pi) puts the processor (Pi) puts the processor Pi in
acceptor priority queue aQ */
 }
 while(dQ not empty) {
 Pi = delete(dQ);
 si = MDA(pI);
/* si is the set of minimum distance acceptors for Pi */
 assign(Pi);
/* assign(Pi) tries to transfers a load equal to excess of Pi from Pi to
the highest priority acceptor from si. If not successful, pi continues
to be a donor with reduced overload.*/
 }

update(k);
 }
}

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 704

4.0 SIMULATION RESULTS
4.1 Dynamic Load Model
The scheduling performance of various strategies in the
modified form has been tested for the proposed network by
simulating artificial dynamic loads. In order to characterize a
non-deterministic load, the total problem is conceived to be
an arbitrary tree, which unwinds itself level by level. A task
scheduled on a processor spawns an arbitrary number of sub-
tasks, which are part of the whole problem tree. Thus the load
on each processor is varying at run time creating unbalance,
and balancer has to be invoked after each unwinding step.
Using the above-simulated dynamic load, the performance of
the proposed network is being tested for HBM & MDS
scheduling schemes. The performance is measured in terms
of load imbalance left after a balancing action. A constraint
that has been forced in the scheduling to maintain minimum
distance i.e. task do not migrate to underloaded processors in
a way so as to make the distance from parent task more than
one hop in the processor network. Under this constraint, the
network gets fully balanced at all levels for different types of
trees. Its comparison with the LET & LEC networks shows
better load balancing. The performance of the network
becomes more attractive considering the fact that the
diameter of the network remains fixed and having the lesser
number of processors unlike other same type of networks.

4.2 HBM Scheme on the proposed network and its
comparison with other networks

To study the behavior of the Hierarchical Balancing
Method (HBM) Scheduling Scheme on the proposed
networks, LEC, LET and Twisted N-cube networks, the
LIF’s are computed for different classes of task structures.
The estimation of LIF is obtained and the curves are plotted
as the LIF against the problem size (in terms of task tree
depth) as shown in Fig. 4.1 - 4.4.

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

1.00

2.00

3.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.1 LIF for complete Binary Tree

The trend of the curves obtained, indicates the average
behaviour of the load imbalance factor (LIF) with respect to
the level in the task tree for different randomly generated task

tree structures when HBM scheme is implemented on
different networks. It has been observed that LIF shows a
similar behaviour in both the cases of binary & ternary tree
task structures, decreasing rapidly to zero after attaining
sufficient number of tasks. In case of complete binary task
trees, this reduction is earlier than in case of ternary task trees
and complete ternary task trees.

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

0.50

1.00

1.50

2.00

2.50

3.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.2 LIF for complete Ternary Tree

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

0.50

1.00

1.50

2.00

2.50

3.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.3 LIF for Arbitrary Binary Tree

The same HBM scheme is implemented on the Twisted N

cube, LET & LEC, for the same class of task tree. The
simulation study indicates that the HBM scheduling is
performing poorly but comparatively for all class of task tree
in comparison to proposed network. The performance results
indicate that the LIF is always higher for twisted N cube and
same in case of LET & LEC in comparison to the proposed
network.

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 705

The reason for better load balance in the proposed network
for all class of tree-structured problems is that the diameter of
the network is very small & constant having small number of
processors. It may be argued that to obtain better load balance
means higher performance, there should be a lessor diameter
and better connectivity in the system.

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

0.50

1.00

1.50

2.00

2.50

3.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.4 LIF for Arbitrary Ternary Tree on

HBM Scheme on different networks for various class of task
structure

4.3 MDS Scheme on the proposed network and its
comparison with other networks

The above-mentioned scheduling scheme is implemented
on the above networks in the same environment. The
simulation run consists of generating various classes of task
trees and executing them on to the proposed network and on
LEC, LET & Twisted N-cube networks. The estimation of
LIF is obtained and the curves are plotted as the LIF against
the problem size (in terms of the task tree depth) shown in
Fig. 4.5 - 4.8.

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.5 LIF for Complete Binary Tree

The trend of the curves obtained, indicates same pattern of
the LIF in case of complete binary and complete ternary task
trees, starting from a peak value and then reducing to zero
level, as the fair number of tasks are available. Where as, in
case of arbitrary binary & ternary task trees, the MDS
schemes implementation shows slow reduction from the
initial peak as the random tree fails to get sufficient number
of tasks. Once good numbers of tasks are available, the LIF
reduces to its lowest values and the scheduling deviates the
balancing trend again and again as it gets sufficient number
of tasks. The complete binary & ternary task trees are
performing better on the proposed network than other
networks.

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

2.00

4.00

6.00

8.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig. 4.6 LIF for Complete Ternary Tree

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig 4.7 LIF for Arbitrary Ternary Tree

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 706

0 2 4 6 8 10 12 14 16 18 20

No. Of Levels

0.00

2.00

4.00

6.00

8.00

L
o
a
d

I
m
b
a
l
a
n
c
e

F
a
c
t
o
r

LETriangle

LEC

LET

Twisted N-Cube

Fig 4.8 LIF for Arbitrary Binary Tree

MDS scheme on different networks for various class of

task structures.
The curves also indicate that when both the scheduling

schemes (HBM and MDS) are implemented on the proposed
network for the same environment, both the schemes are
performing equally good and giving optimal balancing. The
curves shows that in case of complete binary and complete
ternary task trees, the LIF is always reducing more rapidly
than in case other networks.

The better performances of the proposed network for
complete binary & complete ternary task trees may be
attributed for the lesser diameter and lesser number of
processing elements in comparison to other networks.

CONCLUSION
It may be concluded that the proposed triangle based

interconnection topology with only 4 processors, is also a
complete multiprocessor network, which exhibits the better
performance in comparison to other similar networks. It is
always possible to obtain a better load balance in a smaller
and compact network. Hence the proposed network is on
equal footing for comparison with other similar linearly
extensible multiprocessor networks.

Linearly Extensible Triangle is a linearly growing structure
with every extension requires only one processor thereby
reducing the number of processors at various depths
drastically. Hence the triangle-based network is a compact
and economical architecture, which exhibits better properties.

From simulation studies, it has been found that for the
same environment, both dynamic scheduling schemes are
performing better on the proposed network in comparison to
other similar networks particularly for tree structured
problems. Therefore, it can be concluded that the Linearly
Extensible Triangle-based multiprocessor network is a novel
interconnection model for parallel evaluation of all types of
problem graphs, particularly for tree-structured problems.

REFERENCES:
[1] Khaled D and Abdel, A A E “The Hyperstar Interconnection

Network” Journal of Parallel and Distributed Computing 48,
64-98, 2008

[2] Min, W Y and Wei S “ DDE: A Modified Dimension
Exchange Method for Load Balancing in k-array n-cubes”
Journal of Parallel and Distributed Computing 44, 88-96, 1997.

[3] Ganeshan E and Pradhan, D K “The hyper-de Bruijn networks:
Scalable versatile architecture,” IEEE Trans. on PDS, Vol.4,
No.9, pp 962-978, Sept. 1993.

[4] Stone, H.S., “Multiprocessor scheduling with the aid of
network flow algorithms,” IEEE Trans. on Software
Engineering, vol. S-3, no.1, pp 85-93, 1997.

[5] A.H.Esfahanian, L.M.Ni, and B.E. Sagan, “The Twisted N-
Cube with application to multuiprocessing”, IEEE Trans. on
Computers, Vol 40, No.4, pp 88-93, Jan 1993.

[6] Bhuyan, L N and Aggarwal, D. P. “Design and analysis of
general class of interconnection networks,” in Proc. IEEE Int.
Conf. Parallel Processing, Baltimore, MD, Aug.1982.

[7] Mohan Kumar J, and Patnaik, L.M., “Extended Hypercube: A
hierarchical interconnection network of hypercube”, IEEE Trans
on PDS, vol. No.1, pp 45-57, Jan 1992.

[8] Rafiq, M.Q. “A Linearly Extensible Tree Network: Scalable
Versatile Architecture” sent for publication in IEEE PDS (No
109754)

[9] Rafiq M.Q., Padam Kumar & Gupta, J.P, “A Novel Tree-
Structured Multiprocessor Network” International Conference
on Robotics Vision and Parallel Processing for Automation,
Malaysia, July 16 - 18, 1999.

[10] Marc H. Willebeek-LeMair and Anthony P. Reeves; “Strategy
for dynamic load balancing on highly parallel computers,”
IEEE Trans. on PDS, Vol. 4, No. 9, pp 979-993, Sept. 1993.

[11] Rafiq M.Q., M. Ba-Ru-K & A.Samad, “ A Linearly Extensible
Cube Network” sent for publication in IEEE, Jan. 2001

Manaullah / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 700-707

www.ijcsit.com 707

